C. U. SHAH UNIVERSITY Winter Examination-2020

Subject Name: Topology Subject Code: 5SC01TOP1 Semester: 1 Date: 12/03/2021

Branch: M.Sc. (Mathematics) Time: 11:00 To 02:00 Marks: 70

Instructions:

Q-1

Q-2

Q-2

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Attempt the Following questions (07) **a.** Define: Topology 1 **b.** Let X = R and A = (0,1]. Find A' and Bd(A). 2 **c.** Let A, B denotes subsets of a topological space X. Prove that $\overline{A \cup B} =$ 2 $\overline{A} \cup \overline{B}$. **d.** Give an example which shows $(A \cup B)^0 \neq A^0 \cup B^0$. 2 Attempt all questions (14)**a.** Let *X* be a set. 5 Let $\tau_f = \{U \subset X \mid \text{either} X - U = X \text{or} X - U \text{ is finite}\}$ then prove that (X, τ_f) is topological space. **b.** Let (X, τ) be a topological space and Y be a non empty subset of X then 5 prove that the collection $\tau_v = \{U \cap Y \mid U \in \tau\}$ is a topology on *Y*. c. Let Y be a subspace of X then prove that a set A is closed in Y if and 4 only if $A = Y \cap C$ where C is closed in X. OR (14)**Attempt all questions a.** Let X, Y be topological spaces. $f: X \to Y$. Then prove that following are 6 equivalent (1) f is continuous. (2) for every subset A of X, then $f(\overline{A}) \subset \overline{f(A)}$ (3) For every closed set B of Y, $f^{-1}(B)$ is closed in X. **b.** Let (X, d) be a metric space. Define $\tau = \{U \mid foreveryx \in U \mid foreveryx \in U \mid foreveryx \in U\}$ 5 *Uthereexist* $\epsilon > 0$ *such that* $B_{\epsilon}(x) \subset U$. Then prove that τ is topology on X. c. Let R and R_l be set of real numbers with usual topology and lower limit 3 topology respectively. Let $f: R_1 \to R$, by f(x) = x. Is f continuous function? Justify your answer.

Q-3	a.	Attempt all questions Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Let $X = X_1 \times X_2$. Define	(14) 5
		$\beta = \{U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2\}$. Prove that β is a basis for <i>X</i> . Let <i>A</i> be a subset of topological space <i>X</i> and <i>A</i> ' be the set of all limit points of <i>A</i> . Then prove that $\overline{A} = A \cup A'$.	5
	c.	State and prove Pasting Lemma. OR	4
Q-3	a. b. c.	Attempt all questions Prove that continuous image of compact space is compact. State and prove Sequence lemma. Let <i>X</i> be a topological space and $A \subset X$. Then prove that $x \notin \overline{A}$ if and only if there exists an open set <i>U</i> containing <i>x</i> that does not intersect <i>A</i> .	(14) 5 5 4
SECTION – II			
Q-4		Attempt the Following questions	(07)
	a. b. c. d.	Product of two normal space is normal. True/False. Define: Compact Space Define: Second Countability Axiom State Urysohn's lemma	1 2 2 2
Q-5		Attempt all questions Let <i>X</i> and <i>Y</i> be two topological spaces. Let $f: X \to Y$ be continuous function. If every convergent sequence $x_n \to x$ in <i>X</i> then prove that $f(x_n) \to f(x)$ in <i>Y</i> . Also prove that converse is hold if <i>X</i> is metrizable. Prove that a topological space (X, τ) is T_1 space if and only if $\{x\}$ is	(14) 6 5
		closed $\forall x \in X$. Give an example of topological space which is T_1 space but not T_2 space.	3
OR			
Q-5	a.	Attempt all questions Let X be T_1 space and $A \subset X$. Then prove that $x \in A'$ if and only if for each open set U of $x, U \cap A$ is infinite.	(14) 5
	b. с.	Prove that every closed subset of compact set is compact. Let X be a co countable topological space then prove that X is compact if and only if X is finite	5 4
Q-6	a. b.	Attempt all questions Prove that every subspace of T_2 space is T_2 space. Let <i>X</i> be topological space then prove that <i>X</i> is disconnected if and only if there exists a non empty proper subset of <i>X</i> which is both open and closed.	(14) 5 5
	c.	Prove that continuous image of connected space is connected.	4
Q-6	a. b.	OR Attempt all Questions State and prove Heine - Borel theorem Consider <i>R</i> with lower limit topology then prove that <i>R</i> is disconnected.	(14) 10 04

